

Chat Analyzer

[image: PyPI version]
 [https://badge.fury.io/py/chat-analyzer][image: PyPI status]
 [https://pypi.python.org/pypi/chat-analyzer/][image: Documentation Status]
 [https://chat-analyzer.readthedocs.io/en/latest/?badge=latest]Chat Analyzer [https://github.com/David-Fryd/chat-analyzer] is a tool used to process and analyze chat data
from past live streams, providing summarized information about chat activity over the stream’s lifetime.
The information currently reported primarily revolves around the activity per second for various metrics,
with future plans to incorporate semantic analysis into the program (happy chats? sad? excited, wholesome, etc…).

Here’s a video covering the start-to-end usage of the software [https://www.youtube.com/watch?v=GmzRLhK_PJ0]

[image: Example of a visualization chart]
[image: Example of a visualization chart]
Paired with the visualizer hosted on chatanalyze.com [https://chatanalyze.com/], easily understand and interpret
how your chat responds to your performance!

Currently both YouTube and Twitch VODs are supported.

Target Audience:

Anyone can use this tool on anyone’s streams, enabling people beyond the creators themselves to view and use chat analytics data.

	Editors

	Making a clips channel? Need to edit down an 18 hour stream into a 20 minute youtube video? Quickly find
parts of the stream where chat went crazy and look there first! Chat activity is
generally a great proxy for how exciting/engaging the stream is at any moment in time. Not only
will you more quickly find the most interesting sections of the stream, but you’ll
ensure that you don’t miss any moments that you might have might have slept through during your 18 hour-long
editing session.

	Are you a creator that edits your own videos? Focus more on creating the content you love, and less on the tedious
work of editing.

	Streamers / Creators

	Draw specific connections between the content you make and how it engages your community. What type of content makes
your chat go wild? What strategies/types of content are more effective than others?

	See the exact moments people decide to subscribe/become members- what type of content moves people so much that
they decide to support you and your stream?

	Small/Upcoming streamers

	Immitation is the best form of flattery. Pick a popular streamer and see what parts of their stream generate the most engagement!
What type of content/strategies can you use to make your stream more engaging?

Installation

This tool is distributed on PyPI [https://pypi.org/project/chat-analyzer/] and can be installed with pip [https://pip.pypa.io/en/stable/]:

pip install chat-analyzer

To update to the latest version, add the phrase --upgrade to the end of the above command.

Alternatively, the tool can be installed with git:

git clone https://github.com/David-Fryd/chat-analyzer.git
cd chat-analyzer
python setup.py install

Usage

Basic to intermediate/advanced usage can be found on the Getting Started [https://chat-analyzer.readthedocs.io/en/latest/gettingstarted.html] page of the documentation.

A simple command might look like:

chat_analyzer 'https://www.twitch.tv/videos/{VIDEO_ID}' -o

Command line

usage: chat_analyzer [-h] [--version] [--platform {youtube,twitch}]
 [--mode {url,chatfile,reanalyze}]
 [--save-chatfile-output SAVE_CHATFILE_OUTPUT]
 [--interval INTERVAL] [--print-interval PRINT_INTERVAL]
 [--highlight-percentile HIGHLIGHT_PERCENTILE]
 [--highlight-metric {usersPSec,chatsPSec,activityPSec}]
 [--description DESCRIPTION] [--output OUTPUT] [--nojson]
 [--debug] [--break BREAK]
 source

More complete documentation can be found on the Command Line Usage [https://chat-analyzer.readthedocs.io/en/latest/cli.html] page.

Output

For non-developers, I highly recommend you use the visualizer on chatanalyze.com [https://chatanalyze.com/] to view the output of the program.
Simply follow the instructions and upload the output json file to the visualizer.

All of the analytical data is output in a single .json file. Certain datapoints exist regardless of the platform
the VOD is from, some datapoints are specific to the platform.

More complete documentation can be found on the Output Specifications [https://chat-analyzer.readthedocs.io/en/latest/output.html] page.

Known issues

	Reported Users Per Second (UPSec/avgUniqueUsersPerSecond) is actually Users Per Sample (UPSample).

	UPSec is not as simple as dividing unique users per sample by sample length

	As sample size -> video duration, UPSample -> Total unique users.

	For now it is a fine approximation for small sample durations,
but in the future should be remedied either by improving UPSec calc algorithm
or simply by reporting UPSample instead.

Contributing

If you would like to help improve the tool, you’ll find more information on contributing in the Contributing Guide [https://chat-analyzer.readthedocs.io/en/latest/contributing_guide.html].

Special Thanks

This project wouldn’t exist without Xenova and their chat-downloader [https://github.com/xenova/chat-downloader]!
All of the platform-standardization and downloading logic that they worked on for their downloader made the analyzer
infinitely easier to write. In order to avoid compatability issues, this software comes packaged with a frozen version
of the downloader src, and all credit goes to Xenova for the contents in the chat_downloader directory. Since this
was also my first ever python project made for distribution, their organizational structure and style was
invaluable reference for the packaging/distribution process. If you are willing, go on over to their repo and show them some support as well :)

	Getting Started
	Basic Usage

	Usage Modes & Source

	Command Line Usage
	Overview

	Output Specifications
	Common fields:

	Twitch-specific fields:

	YouTube-specific fields:

	Example JSON output:

	Contributing Guide
	Add a feature, fix a bug, or write documentation

	Changelog
	Releases

Getting Started

Welcome to the getting started guide for Chat Analyzer! In this guide,
we’ll cover the basics of how to use the software, some intermediate and advanced uses,
and overall best practices when using the software.

Warning

This guide, the software itself, and the website visualization are still in the beta phase of development and not yet complete.
Because Twitch Rivals started recently, I decided to make the software available because I believe it will
be useful to some people even in its current state. If there are any questions/concerns, feel free to contact me at info@chatanalyze.com, or
shoot me a DM on discord NaCl-y#1117.

Note

Even though this guide is not yet complete, the available arguments/flags are fully documented by running the --help flag,
and can also be found on the Command Line Interface Specification page.

Basic Usage

In this section, we’ll cover the basic steps necessary to use the Chat Analyzer software.

Step 1 - Installation

If you haven’t already installed the software, you can easily install the software one of two ways:

This tool is distributed on PyPI [https://pypi.org/project/chat-downloader/] and can be installed with pip [https://pip.pypa.io/en/stable/]:

pip install chat-analyzer

To update to the latest version, run:

pip install chat-analyzer --upgrade

Alternatively, the tool can be installed with git:

git clone https://github.com/David-Fryd/chat-analyzer.git
cd chat-analyzer
python setup.py install

Step 2 - Pick a Past Stream

By default, we will be downloading the chatlog data to analyze from a past stream’s url.
Currently we support Twitch and YouTube streams/VODs. For a Twitch stream, simply copy the twitch.tv... link
to use with the analyzer. For a YouTube stream, it is best to use the “share” button underneath
the video player to get the youtu.be link, but the analyzer itself will still work with a
standard YouTube link.

For example, a youtube/twitch link might look like:

https://youtu.be/d6JXhg1GBKs
https://www.twitch.tv/videos/1552248469

For help picking the right type of link, you can reference the rules & criteria under the url section.

Step 3 - Run the Chat Analyzer

Now that we have the link, all we have to do is run the analyzer and give it the link as an input. Open up a terminal/command prompt and run the following command:

chat_analyzer '<link>'

The program will produce an output file in the directory that the program was run in (the current directory). The output file/filepath can also be assigned
using the -o flag:

chat_analyzer '<link>' -o '<output_filepath>'

After starting the program, the chatlog download will initiate and you should see output that looks something like this:

Getting chatlog using Xenonvas chat-downloader (https://github.com/xenova/chat-downloader)...
Successfully retrieved chat generator:
 Title: <video_title>
 Duration: ... (... seconds)
NOTICE: Downloading chats from a url is the largest rate-limiting factor.
 If you intend to sample the data differently multiple times, consider using chatfile mode, or saving the chat data with --save-chatfile.

Processing (Sampling) chat data...
 Completion | Processed Media Time | Messages Processed
 (...%) | ... / ... | ...

As messages are downloaded, you will see constant updates indicating the progress of the download.

Note

The downloading of chat data is the slowest part of the entire process. Twitch/YouTube limits the rate at which chat data can be downloaded. If you want to resample
the chat multiple times, look into using chatfile mode

After the download has finished, you should see the following report:

Downloaded & Processed ... messages.
Post-processing (Analyzing)...
Post-processing (Analyzing) complete!
Successfully wrote chat analytics to `<output_filepath>`

The analyzed output file can now be found at <output_filepath>!

Final Step - Visualize the Chat Data

Now that we have generated the output file, we will use the visualizer found at chatanalyze.com/visualize [https://chatanalyze.com/visualize] to nicely
visualize the analytical data. Once on the page, all you have to do is select the output file on the page and the visualization data will
automatically appear on screen.

The two core features currently available are the graph representation of chat activity, and the highlights table. The graph
provides a quick visual reference to the chat activity at any given point throughout the whole stream. The highlights table provides a useful way
to examine the highest-activity portions of the video, and to quickly jump to those sections of the stream using the “Jump To” functionality.

Usage Modes & Source

In its simplest form, this software outputs information about a chatlog associated with a livestream.
Regardless of the mode that is used, the output file format is the same (More details under Output Specification).

The three modes that can be used all refer to the type of input the program receieves.

url

The default mode, url accepts a link from a supported streaming site,
downloads the raw chat data, processes the raw chat data into samples, and analyzes the samples.

Streaming services like Twitch & YouTube limit the rate at which we can download chat messages,
The slowest part of the analytics process is downloading the chats themselves.

The link provided must:

	Be a link to a past (finished) livestream.

	Come from a supported streaming site.

	Be the original video with the chatlog/replay. (It can’t be a reposted video.)

Note

If you want to analyze a YouTube stream, it is recommended
you provide the youtu.be link generated through the “share”
feature of the video.

[image: Youtube Share Button found beneath YouTube videos]
While the standard YouTube video link will work to download the chat and produce the data,
the youtu.be short link works better with the visualizer at chatanalyze.com [https://chatanalyze.com/],
enabling “Jump to” functionality (quickly jumping to highlighted points in the video).

chatfile

chatfile mode …

Warning

This section has not yet been written.
Even though this guide is not yet complete, the available arguments/flags are fully documented by running the --help flag,
and can also be found on the Command Line Interface Specification page.

reanalyze

reanalyze mode …

Warning

This section has not yet been written.
Even though this guide is not yet complete, the available arguments/flags are fully documented by running the --help flag,
and can also be found on the Command Line Interface Specification page.

Command Line Usage

Overview

A full list of command line arguments can be obtained by running the help command:

$ chat_analyzer -h

The output of which is as follows:

usage: chat_analyzer [-h] [--version] [--platform {youtube,twitch}]
 [--mode {url,chatfile,reanalyze}]
 [--save-chatfile-output SAVE_CHATFILE_OUTPUT]
 [--interval INTERVAL] [--print-interval PRINT_INTERVAL]
 [--highlight-percentile HIGHLIGHT_PERCENTILE]
 [--highlight-metric {usersPSec,chatsPSec,activityPSec}]
 [--description DESCRIPTION] [--output OUTPUT] [--nojson]
 [--debug] [--break BREAK]
 source

A tool used to process and analyze chat data from past live streams, providing
summarized information about chat activity over the stream's lifetime.

Required Arguments:
 source
 Raw chat data to process and analyze, or processed
			sample data to re-analyze.

 Output Specifications

Output Specifications

All of the analytical data is output in a single .json file. Certain datapoints exist regardless of the platform the VOD is from, some datapoints are specific to the platform.

Common fields:

Chat Analytics Data

The Chat Analytics object is directly transformed into JSON data.

	
class chat_analyzer.dataformat.ChatAnalytics(duration: float, interval: int, description: str, program_version: str, platform: str, duration_text: str = '', interval_text: str = '', mediaTitle: str = 'No Media Title', mediaSource: str = 'No Media Source', samples: ~typing.List[~chat_analyzer.dataformat.Sample] = <factory>, totalActivity: int = 0, totalChatMessages: int = 0, totalUniqueUsers: int = 0, overallAvgActivityPerSecond: float = 0, overallAvgChatMessagesPerSecond: float = 0, overallAvgUniqueUsersPerSecond: float = 0, highlights: ~typing.List[~chat_analyzer.dataformat.Highlight] = <factory>, highlights_duration: float = 0, highlights_duration_text: str = '', highlight_percentile: float = 0, highlight_metric: str = '', spikes: ~typing.List[~chat_analyzer.dataformat.Spike] = <factory>, _overallUserChats: dict = <factory>, _currentSample: ~typing.Optional[~chat_analyzer.dataformat.Sample] = None)

	Bases: ABC

Class that contains the results of the chat data analysis/processing.

An instance of a subclass is created and then modified throughout
the analysis process. After the processing of the data is complete,
the object will contain all relevant results we are looking for.

This class cannot be directly instantiated, see the subclasses
YoutubeChatAnalytics & TwitchChatAnalytics. YT and Twitch
chats report/record data differently and contain site-specific
events, so we centralize common data/fxnality and separate
specifics into subclasses.

The object can then be converted to JSON/printed/manipulated as
desired to format/output the results as necessary.

—

[Defined when class Initialized]:

	duration: float
	The total duration (in seconds) of the associated video/media. Message times correspond to the video times.

	interval: int
	The time interval (in seconds) at which to compress datapoints into samples. i.e. Duration of the samples. The smaller the interval, the more
granular the analytics are. At interval=5, each sample contains 5 seconds of cumulative data.
(With the exception of the last sample, which may be shorter than the interval.)
This is b/c media duration is not necessarily divisible by the interval.
#(samples in raw_data) is about (video duration/interval) (+1 if necessary to encompass remaining non-divisible data at end of data).

	description: str
	A description included to help distinguish it from other analytical data.

	program_version: str
	The version of the chat analytics program that was used to generate the data. Helps identify outdated/version-specific data formats.

	platform: str
	Used to store the platform the data came from: ‘www.youtube.com’, ‘www.twitch.tv’, ‘youtu.be’…
While it technically can be determined by the type of subclass, this makes for easier conversion to JSON/output

[Automatically re-defined on post-init]:

	duration_text: str
	String representation of the media duration time.

	interval_text: str
	String representation of the interval time.

[Defined w/ default and modified DURING analysis]:

	mediaTitle: str
	The title of the media associated with the chatlog.

	mediaSource: str
	The link to the media associated with the chatlog (url that it was origianlly downloaded from or filepath of a chatfile).

	samples: List[Sample]
	An array of sequential samples, each corresponding to data about a section of chat of ‘interval’ seconds long.
Each sample has specific data corresponding to a time interval of the vid. See the ‘Sample’ class

	totalActivity: int
	The total number of messages/things (of any type!) that appeared in chat. (Sum of intervalActivity from all samples)
Includes messages,notifications,subscriptions, superchats, … anything that appeared in chat

	totalChatMessages: int
	The total number of chats sent by human (non-system) users (what is traditionally thought of as a chat)
NOTE: Difficult to discern bots from humans other than just creating a known list of popular bots and blacklisting,
because not all sites (YT/Twitch) provide information on whether chat was sent by a registered bot or not.

	highlight_percentile: float
	The cutoff percentile that samples must meet to be considered a highlight

	highlight_metric: str
	The metric to use for engagement analysis to build highlights. NOTE: must be converted into actual Sample field name before use.

[Defined w/ default and modified AFTER analysis]:

	totalUniqueUsers: int
	The total number of unique users that sent a chat message (human users that sent at least one traditional chat)

	overallAvgActivityPerSecond: float
	The average activity per second across the whole chatlog. (totalActivity/totalDuration)

	overallAvgChatMessagesPerSecond: float
	The average number of chat messages per second across the whole chatlog. (totalChatMessages/totalDuration)

	overallAvgUniqueUsersPerSecond: float
	The average number of unique users chatting per second.

	highlights: List[Highlight]
	A list of the high engagement sections of the chatlog.

	highlights_duration: float
	The cumulative duration of the highlights (in seconds)

	highlights_duration_text: str
	The cumulative duration of the highlights represented in text format (i.e. hh:mm:ss)

	spikes: List[Spike]
	Not yet implemented TODO
A list of the calculated spikes in the chatlog. May contain spikes of different types, identifiable by the spike’s type field.

	
chatlog_post_process(settings: ProcessSettings)

	After we have finished iterating through the chatlog and constructing all of the samples,
we call chatlog_post_process() to process the cumulative data points (so we don’t have to do this every time we add a sample).

This step is sometimes referred to as “analysis”.

Also removes the internal fields that don’t need to be output in the JSON object.

	Parameters

	settings (ProcessSettings) – Utility class for passing information from the analyzer to the chatlog processor and post-processor

	
create_new_sample()

	Post-processes the previous sample, then appends & creates a new sample
following the previous sample sequentially. If a previous sample doesn’t exist,
creates the first sample.

NOTE: If there there are only 2 chats, one at time 0:03, and the other at 5:09:12,
there are still a lot of empty samples in between (because we still want to graph/track the silence times with temporal stability)

	
get_highlights(highlight_metric: str, highlight_percentile: float)

	Highlights reference a contiguous period of time where the provided metric remains above the percentile threshold.
Find and return a list of highlights referencing the start and end times of samples whose highlight_metric is in
the highlight_percentile for contiguous period of time of the referenced samples.

A highlight may reference more than one sample if contiguous samples meet the percentile cutoff.

Samples in the top ‘percentile’% of the selected engagement metric will be considered high-engagement samples and included in the highlights output list.
The larger the percentile, the greater the metric requirement before being reported. If ‘engagement-percentile’=93.0, any sample in the 93rd percentile (top 7.0%%) of the selected metric will be considered an engagement highlight.

These high-engagement portions of the chatlog are stored as highlights, and may last for multiple samples.

This method should only be called after the averages have been calculated,
ensuring accurate results when determining periods of high engagement.

	Parameters

	
	highlight_metric – The metric samples are compared to determine if they are high-engagement samples. NOTE: Internally converted to the actual field name of a sample field.

	highlight_percentile – The cutoff percentile that the samples must meet to be included in a highlight

	Returns

	a list of highlights referencing samples that met the percentile cutoff requirements for the provided metric

	Return type

	List[Highlight]

	
get_spikes(spike_sensitivity, spike_metric)

	A spike is a point in the chatlog where from one sample to the next, there is a sharp increase in the provided metric.

…? Are spikes sustained or..?
?:
A spike is a point in the chatlog where the activity is significantly different from the average activity.
Activity is significantly different if it is > avg*SPIKE_MULT_THRESHOLD.
We detect a spike if the high activity level is maintained for at least SPIKE_SUSTAIN_REQUIREMENT # of samples.

	
print_process_progress(msg, idx, finished=False)

	Prints progress of the chat download/process to the console.

If finished is true, normal printing is skipped and the last bar of progress is printed.
This is important because we print progress every UPDATE_PROGRESS_INTERVAL messages, and the total number of
messages is not usually divisible by this. We therefore have to slightly change the approach to printing progress for this special case.

	
process_chatlog(chatlog: Chat, source: str, settings: ProcessSettings)

	Iterates through the whole chatlog and calculates the analytical data (Modifies and stores in a ChatAnalytics object).

	Parameters

	
	chatlog (chat_downloader.sites.common.Chat) – The chatlog we have downloaded

	source (str) – The source of the media associated w the chatlog. URL of the media we have downloaded the log from, or a filepath

	settings (ProcessSettings) – Utility class for passing information from the analyzer to the chatlog processor and post-processor

	
process_message(msg)

	Given a msg object from chat, update appropriate statistics based on the chat

Sample Data

The main JSON data contains a sample field comprised of a list of Sample objects.

	
class chat_analyzer.dataformat.Sample(startTime: float, endTime: float, sampleDuration: float = -1, startTime_text: str = '', endTime_text: str = '', activity: int = 0, chatMessages: int = 0, firstTimeChatters: int = 0, uniqueUsers: int = 0, avgActivityPerSecond: float = 0, avgChatMessagesPerSecond: float = 0, avgUniqueUsersPerSecond: float = 0, _userChats: dict = <factory>)

	Bases: object

Class that contains data of a specific time interval of the chat.
Messages will be included in a sample if they are contained within [startTime, endTime)

—

[Defined when class Initialized]:

	startTime: float
	The start time (inclusive) (in seconds) corresponding to a sample.

	endTime: float
	The end time (exclusive) (in seconds) corresponding to a sample.

[Automatically Defined on init]:

	startTime_text: str
	The start time represented in text format (i.e. hh:mm:ss)

	endTime_text: str
	The end time represented in text format (i.e. hh:mm:ss)

	sampleDuration: float
	The duration (in seconds) of the sample (end-start)
NOTE: Should be == to the selected interval in all except the last sample if the total duration of the chat is not divisible by the interval

[Defined w/ default and modified DURING analysis of sample]:

	activity: int
	The total number of messages/things (of any type!) that appeared in chat within the start/endTime of this sample.
Includes messages,notifications,subscriptions, superchats, … anything that appeared in chat

	chatMessages: int
	The total number of chats sent by human (non-system) users (what is traditionally thought of as a chat)
NOTE: Difficult to discern bots from humans other than just creating a known list of popular bots and blacklisting,
because not all sites (YT/Twitch) provide information on whether chat was sent by a registered bot or not.

	firstTimeChatters: int
	The total number of users who sent their first message of the whole stream during this sample interval

[Defined w/ default and modified AFTER analysis of sample]:

	uniqueUsers: int
	The total number of unique users that sent a chat message across this sample interval (len(self._userChats))

	avgActivityPerSecond: float
	The average activity per second across this sample interval. (activity/sampleDuration)

	avgChatMessagesPerSecond: float
	The average number of chat messages per second across this sample interval. (totalChatMessages/sampleDuration)

	avgUniqueUsersPerSecond: float
	The average number of unique users that sent a chat across this sample interval. (uniqueUsers/sampleDuration)

	
sample_post_process()

	After we have finished adding messages to a particular sample (moving on to the next sample),
we call sample_post_process() to process the cumulative data points (so we don’t have to do this every time we add a message)

Also removes the internal fields that don’t need to be output in the JSON object.

Highlight Data

The main JSON data contains a highlights field comprised of a lsit of Highlight objects.
Currently, there are no platform-specific fields corresponding to Highlights (i.e. highlight
objects look the same for all platforms).

	
class chat_analyzer.dataformat.Highlight(startTime: float, endTime: float, description: str, type: str, peak: float, avg: float)

	Bases: Section

Highlights reference a contiguous period of time where the provided metric remains above the percentile threshold.

—

	type: str
	The engagement metric. i.e. “avgActivityPerSecond”, “avgChatMessagesPerSecond”, “avgUniqueUsersPerSecond”, etc.
NOTE: It is stored as its converted value (the name of the actual field), NOT the metric str the user provided in the CLI.

	peak: float
	The maximum value of the engagement metric throughout the whole Highlight (among the samples in the Highlight).

	avg: float
	The average value of the engagement metric throughout the whole Highlight (among the samples in the Highlight).

Twitch-specific fields:

Chat Analytics Data (Twitch)

	
class chat_analyzer.dataformat.TwitchChatAnalytics(duration: float, interval: int, description: str, program_version: str, platform: str, duration_text: str = '', interval_text: str = '', mediaTitle: str = 'No Media Title', mediaSource: str = 'No Media Source', samples: ~typing.List[~chat_analyzer.dataformat.Sample] = <factory>, totalActivity: int = 0, totalChatMessages: int = 0, totalUniqueUsers: int = 0, overallAvgActivityPerSecond: float = 0, overallAvgChatMessagesPerSecond: float = 0, overallAvgUniqueUsersPerSecond: float = 0, highlights: ~typing.List[~chat_analyzer.dataformat.Highlight] = <factory>, highlights_duration: float = 0, highlights_duration_text: str = '', highlight_percentile: float = 0, highlight_metric: str = '', spikes: ~typing.List[~chat_analyzer.dataformat.Spike] = <factory>, _overallUserChats: dict = <factory>, _currentSample: ~typing.Optional[~chat_analyzer.dataformat.Sample] = None, totalSubscriptions: int = 0, totalGiftSubscriptions: int = 0, totalUpgradeSubscriptions: int = 0)

	Bases: ChatAnalytics

Extension of the ChatAnalytics class, meant to contain data that all chats have
and data specific to Twitch chats.

NOTE: Most twitch-specific attributes don’t make a lot of sense to continously report a per-second value,
so we don’t!

—

(See ChatAnalytics class for common fields)

[Defined w/ default and modified DURING analysis]:

	totalSubscriptions: int
	The total number of subscriptions that appeared in the chat (which people purchased themselves).

	totalGiftSubscriptions: int
	The total number of gift subscriptions that appeared in the chat.

	totalUpgradeSubscriptions: int
	The total number of upgraded subscriptions that appeared in the chat.

	
chatlog_post_process(settings)

	After we have finished iterating through the chatlog and constructing all of the samples,
we call chatlog_post_process() to process the cumulative data points (so we don’t have to do this every time we add a sample).

This step is sometimes referred to as “analysis”.

Also removes the internal fields that don’t need to be output in the JSON object.

	Parameters

	settings (ProcessSettings) – Utility class for passing information from the analyzer to the chatlog processor and post-processor

	
process_message(msg)

	Given a msg object from chat, update common fields and twitch-specific fields

Sample Data (Twitch)

	
class chat_analyzer.dataformat.TwitchSample(startTime: float, endTime: float, sampleDuration: float = -1, startTime_text: str = '', endTime_text: str = '', activity: int = 0, chatMessages: int = 0, firstTimeChatters: int = 0, uniqueUsers: int = 0, avgActivityPerSecond: float = 0, avgChatMessagesPerSecond: float = 0, avgUniqueUsersPerSecond: float = 0, _userChats: dict = <factory>, subscriptions: int = 0, giftSubscriptions: int = 0, upgradeSubscriptions: int = 0)

	Bases: Sample

Class that contains data specific to Twitch of a specific time interval of the chat.

—

[Defined w/ default and modified DURING analysis of sample]:

	subscriptions: int
	The total number of subscriptions (that people purhcased themselves) that appeared in chat within the start/endTime of this sample.

	giftSubscriptions: int
	The total number of gift subscriptions that appeared in chat within the start/endTime of this sample.

	upgradeSubscriptions: int
	The total number of upgraded subscriptions that appeared in chat within the start/endTime of this sample.

YouTube-specific fields:

Chat Analytics Data (YouTube)

	
class chat_analyzer.dataformat.YoutubeChatAnalytics(duration: float, interval: int, description: str, program_version: str, platform: str, duration_text: str = '', interval_text: str = '', mediaTitle: str = 'No Media Title', mediaSource: str = 'No Media Source', samples: ~typing.List[~chat_analyzer.dataformat.Sample] = <factory>, totalActivity: int = 0, totalChatMessages: int = 0, totalUniqueUsers: int = 0, overallAvgActivityPerSecond: float = 0, overallAvgChatMessagesPerSecond: float = 0, overallAvgUniqueUsersPerSecond: float = 0, highlights: ~typing.List[~chat_analyzer.dataformat.Highlight] = <factory>, highlights_duration: float = 0, highlights_duration_text: str = '', highlight_percentile: float = 0, highlight_metric: str = '', spikes: ~typing.List[~chat_analyzer.dataformat.Spike] = <factory>, _overallUserChats: dict = <factory>, _currentSample: ~typing.Optional[~chat_analyzer.dataformat.Sample] = None, totalSuperchats: int = 0, totalMemberships: int = 0)

	Bases: ChatAnalytics

Extension of the ChatAnalytics class, meant to contain data that all chats have
and data specific to YouTube chats.

NOTE: Most youtube-specific attributes don’t make a lot of sense to continously report a per-second value,
so we don’t!

—

(See ChatAnalytics class for common fields and descriptions)

[Defined w/ default and modified DURING analysis]:

	totalSuperchats: int
	The total number of superchats (regular/ticker) that appeared in the chat.
NOTE: A creator doesn’t necessarily care what form a superchat takes, so we just combine regular and ticker superchats

	totalMemberships: int
	The total number of memberships that appeared in the chat.

	
process_message(msg)

	Given a msg object from chat, update common fields and youtube-specific fields

Sample Data (YouTube)

	
class chat_analyzer.dataformat.YoutubeChatAnalytics(duration: float, interval: int, description: str, program_version: str, platform: str, duration_text: str = '', interval_text: str = '', mediaTitle: str = 'No Media Title', mediaSource: str = 'No Media Source', samples: ~typing.List[~chat_analyzer.dataformat.Sample] = <factory>, totalActivity: int = 0, totalChatMessages: int = 0, totalUniqueUsers: int = 0, overallAvgActivityPerSecond: float = 0, overallAvgChatMessagesPerSecond: float = 0, overallAvgUniqueUsersPerSecond: float = 0, highlights: ~typing.List[~chat_analyzer.dataformat.Highlight] = <factory>, highlights_duration: float = 0, highlights_duration_text: str = '', highlight_percentile: float = 0, highlight_metric: str = '', spikes: ~typing.List[~chat_analyzer.dataformat.Spike] = <factory>, _overallUserChats: dict = <factory>, _currentSample: ~typing.Optional[~chat_analyzer.dataformat.Sample] = None, totalSuperchats: int = 0, totalMemberships: int = 0)

	Bases: ChatAnalytics

Extension of the ChatAnalytics class, meant to contain data that all chats have
and data specific to YouTube chats.

NOTE: Most youtube-specific attributes don’t make a lot of sense to continously report a per-second value,
so we don’t!

—

(See ChatAnalytics class for common fields and descriptions)

[Defined w/ default and modified DURING analysis]:

	totalSuperchats: int
	The total number of superchats (regular/ticker) that appeared in the chat.
NOTE: A creator doesn’t necessarily care what form a superchat takes, so we just combine regular and ticker superchats

	totalMemberships: int
	The total number of memberships that appeared in the chat.

	
process_message(msg)

	Given a msg object from chat, update common fields and youtube-specific fields

Example JSON output:

An output JSON file might look something like…
(Note, only generic fields are shown. Platform-specific fields would be included in
their respective sections: the main analytics data in the main body of the JSON, and the
sample data within each sample.)

{
 "duration": 7386.016,
 "interval": 5,
 "description": "description ",
 "program_version": "1.0.0b5",
 "platform": "www.....com",
 "duration_text": "2:03:06",
 "interval_text": "0:05",
 "mediaTitle": "The title of the VOD",
 "mediaSource": "https://www...",
 "samples": [
 {
 "startTime": 0,
 "endTime": 5,
 "sampleDuration": 5,
 "startTime_text": "0:00",
 "endTime_text": "0:05",
 "activity": 10,
 "chatMessages": 9,
 "firstTimeChatters": 9,
 "uniqueUsers": 9,
 "avgActivityPerSecond": 2.0,
 "avgChatMessagesPerSecond": 1.8,
 "avgUniqueUsersPerSecond": 1.8,
 "_userChats": {},
 },
 ...
],
 "totalActivity": 42547,
 "totalChatMessages": 42034,
 "totalUniqueUsers": 12533,
 "overallAvgActivityPerSecond": 5.760480345561126,
 "overallAvgChatMessagesPerSecond": 5.691024768968819,
 "overallAvgUniqueUsersPerSecond": 5.66955345060893,
 "highlights": [
 {
 "startTime": 4405,
 "endTime": 4420,
 "description": "avgUniqueUsersPerSecond sustained at or above [8.6]",
 "type": "avgUniqueUsersPerSecond",
 "peak": 11.2,
 "avg": 9.866666666666665,
 "duration": 15,
 "duration_text": "0:15",
 "startTime_text": "1:13:25",
 "endTime_text": "1:13:40"
 },
 ...
],
 "highlights_duration": 540,
 "highlights_duration_text": "9:00",
 "highlight_percentile": 93.0,
 "highlight_metric": "usersPSec",
 "spikes": [],
 "_overallUserChats": {},
 "_currentSample": null,
}

 Contributing Guide

Contributing Guide

Thank you so much for considering contributing to the project! Below you’ll find the basic steps required to contribute to the project,
from setup to pull request.

Add a feature, fix a bug, or write documentation

	Fork this repository [https://github.com/David-Fryd/chat-analyzer/fork] on GitHub: Make your own copy of the repository. Once you’ve made changes to your own version, you will create a pull request to merge your changes into the main repository.

	Clone the forked repository: Clone your forked version of the repository to your local machine so that you can make edits to it.

git clone git@github.com:YOUR_GITHUB_USERNAME/chat-analyzer.git

	Create a new branch: Create a new branch for each different type of feature/fix/edit you would like to make in your forked repository.
Each pull request you eventually make should correspond to a single feature, fix, or edit. This allows for an easier review process & improves
the overall quality of the commit history.

cd chat-analyzer
git checkout -b <branch_name>

The <branch_name> should be a short, descriptive name for the feature being worked on. i.e: “add-foo-field”, “fix-issue-24”, “refactor-help-cmd”, etc…

	Set up your enviornment by installing the developer dependencies: Certain dependencies are used for development that are not required
for standard usage. These dependencies allow you to do things such as run tests, build documentation, lint your code, etc…

pip install -e ".[dev]"

	Make your changes: You are now ready to make all of the changes/additions you want to contribute to the project!

	[SKIP FOR NOW]: Testing w/ pytest is not yet implemented, so you can ignore this step for now. It will eventually happen at this step.

	[SKIP FOR NOW]: Linting w/ flake8 is not yet implemented, so you can ignore this step for now. It will eventually happen at this step.

	As you make your changes, add [https://git-scm.com/docs/git-add] the new/modified files and
commit [https://git-scm.com/docs/git-commit] the files, adding a commit a message with -m "<message>" that abides by the Conventional Commits specification [https://www.conventionalcommits.org/en/v1.0.0/#summary].
Do not commit files until they have been tested and linted (see previous two steps).
After fully completing the change you wish to add to the main codebase,
push [https://git-scm.com/docs/git-push] the commits.

git add path/to/code.py
git commit -m 'message'
git push origin <branch_name>

If the change you are making is large or has slightly different components, consider chunking the changes into separate commits. For example:

git add chat_analyzer/cli.py
git add chat_analyzer/analyzer.py
git commit -m 'feat: added foo command'
git add docs/
git commit -m 'docs: guide covers foo command'
git push origin add-foo-command

	Create a pull request [https://help.github.com/articles/creating-a-pull-request]: Once pushing your final changes to the branch in your forked repository,
create a pull request from your forked repository on GitHub to the main branch of the Chat Analyzer repository.

All done! - Your changes will be reviewed and merged into the main repository by the maintainers. Thanks again for contributing to the project :)

 Changelog

Changelog

(SEE TODO.md in root directory to see whats up next!)

Releases

LATEST RELEASE:

1.0.6b3 (8/15/2022)

	When not given an output filename, the automatically generated filepath will use a cleansed version of the media title (to help avoid issues with invalid filenames)

1.0.6b2 (8/9/2022)

	highlight_percentile and highlight_metric now included in output.

	README example image fix

1.0.5b1 (8/3/2022)

	Added support for youtu.be links (youtube shortlinks generated from “share” button on YT)

v1.0.1b1 (7/31/2022)

	Version 1 beta fxnality!

	[Re-release w/ Doc overhaul]

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 chat_analyzer	

 	
 	
 chat_analyzer.analyzer	

 	
 	
 chat_analyzer.cli	

 	
 	
 chat_analyzer.dataformat	

 	
 	
 chat_analyzer.metadata	

 	
 	
 chat_analyzer.util	

 Index

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | Y

A

 	
 	activity (chat_analyzer.dataformat.Sample attribute)

 	avg (chat_analyzer.dataformat.Highlight attribute)

 	
 	avgActivityPerSecond (chat_analyzer.dataformat.Sample attribute)

 	avgChatMessagesPerSecond (chat_analyzer.dataformat.Sample attribute)

 	avgUniqueUsersPerSecond (chat_analyzer.dataformat.Sample attribute)

C

 	
 	
 chat_analyzer

 	module

 	
 chat_analyzer.analyzer

 	module

 	
 chat_analyzer.cli

 	module

 	
 chat_analyzer.dataformat

 	module

 	
 chat_analyzer.metadata

 	module

 	
 	
 chat_analyzer.util

 	module

 	ChatAnalytics (class in chat_analyzer.dataformat), [1]

 	chatlog_post_process() (chat_analyzer.dataformat.ChatAnalytics method), [1]

 	(chat_analyzer.dataformat.TwitchChatAnalytics method), [1]

 	chatMessages (chat_analyzer.dataformat.Sample attribute)

 	check_chatlog_downloader_supported() (in module chat_analyzer.analyzer)

 	check_interval() (in module chat_analyzer.cli)

 	check_percentile_float() (in module chat_analyzer.cli)

 	check_positive_int() (in module chat_analyzer.cli)

 	create_new_sample() (chat_analyzer.dataformat.ChatAnalytics method), [1]

D

 	
 	description (chat_analyzer.dataformat.ChatAnalytics attribute)

 	(chat_analyzer.dataformat.Section attribute)

 	(chat_analyzer.dataformat.Spike attribute)

 	dprint() (in module chat_analyzer.util)

 	
 	duration (chat_analyzer.dataformat.ChatAnalytics attribute)

 	(chat_analyzer.dataformat.Section attribute)

 	duration_text (chat_analyzer.dataformat.ChatAnalytics attribute)

 	(chat_analyzer.dataformat.Section attribute)

E

 	
 	endTime (chat_analyzer.dataformat.Sample attribute)

 	(chat_analyzer.dataformat.Section attribute)

 	(chat_analyzer.dataformat.Spike attribute)

 	
 	endTime_text (chat_analyzer.dataformat.Sample attribute)

 	(chat_analyzer.dataformat.Section attribute)

F

 	
 	firstTimeChatters (chat_analyzer.dataformat.Sample attribute)

G

 	
 	get_ChatAnalytics_from_file() (in module chat_analyzer.analyzer)

 	get_chatlog_downloader() (in module chat_analyzer.analyzer)

 	get_chatmsgs_from_chatfile() (in module chat_analyzer.analyzer)

 	
 	get_highlights() (chat_analyzer.dataformat.ChatAnalytics method), [1]

 	get_spikes() (chat_analyzer.dataformat.ChatAnalytics method), [1]

 	giftSubscriptions (chat_analyzer.dataformat.TwitchSample attribute)

H

 	
 	Highlight (class in chat_analyzer.dataformat), [1]

 	highlight_metric (chat_analyzer.dataformat.ChatAnalytics attribute)

 	(chat_analyzer.dataformat.ProcessSettings attribute)

 	highlight_percentile (chat_analyzer.dataformat.ChatAnalytics attribute)

 	(chat_analyzer.dataformat.ProcessSettings attribute)

 	
 	highlights (chat_analyzer.dataformat.ChatAnalytics attribute)

 	highlights_duration (chat_analyzer.dataformat.ChatAnalytics attribute)

 	highlights_duration_text (chat_analyzer.dataformat.ChatAnalytics attribute)

I

 	
 	interval (chat_analyzer.dataformat.ChatAnalytics attribute)

 	
 	interval_text (chat_analyzer.dataformat.ChatAnalytics attribute)

M

 	
 	main() (in module chat_analyzer.cli)

 	mediaSource (chat_analyzer.dataformat.ChatAnalytics attribute)

 	mediaTitle (chat_analyzer.dataformat.ChatAnalytics attribute)

 	memberships (chat_analyzer.dataformat.YoutubeSample attribute)

 	
 module

 	chat_analyzer

 	chat_analyzer.analyzer

 	chat_analyzer.cli

 	chat_analyzer.dataformat

 	chat_analyzer.metadata

 	chat_analyzer.util

 	
 	msg_break (chat_analyzer.dataformat.ProcessSettings attribute)

O

 	
 	output_json_to_file() (in module chat_analyzer.analyzer)

 	overallAvgActivityPerSecond (chat_analyzer.dataformat.ChatAnalytics attribute)

 	
 	overallAvgChatMessagesPerSecond (chat_analyzer.dataformat.ChatAnalytics attribute)

 	overallAvgUniqueUsersPerSecond (chat_analyzer.dataformat.ChatAnalytics attribute)

P

 	
 	peak (chat_analyzer.dataformat.Highlight attribute)

 	platform (chat_analyzer.dataformat.ChatAnalytics attribute)

 	print_interval (chat_analyzer.dataformat.ProcessSettings attribute)

 	print_process_progress() (chat_analyzer.dataformat.ChatAnalytics method), [1]

 	process_chatlog() (chat_analyzer.dataformat.ChatAnalytics method), [1]

 	
 	process_message() (chat_analyzer.dataformat.ChatAnalytics method), [1]

 	(chat_analyzer.dataformat.TwitchChatAnalytics method), [1]

 	(chat_analyzer.dataformat.YoutubeChatAnalytics method), [1], [2]

 	ProcessSettings (class in chat_analyzer.dataformat)

 	program_version (chat_analyzer.dataformat.ChatAnalytics attribute)

R

 	
 	remove_non_alpha_numeric() (in module chat_analyzer.util)

 	
 	run() (in module chat_analyzer.analyzer)

S

 	
 	Sample (class in chat_analyzer.dataformat), [1]

 	sample_post_process() (chat_analyzer.dataformat.Sample method), [1]

 	sampleDuration (chat_analyzer.dataformat.Sample attribute)

 	samples (chat_analyzer.dataformat.ChatAnalytics attribute)

 	Section (class in chat_analyzer.dataformat)

 	SmartFormatter (class in chat_analyzer.cli)

 	Spike (class in chat_analyzer.dataformat)

 	spike_sensitivity (chat_analyzer.dataformat.ProcessSettings attribute)

 	
 	spikes (chat_analyzer.dataformat.ChatAnalytics attribute)

 	startTime (chat_analyzer.dataformat.Sample attribute)

 	(chat_analyzer.dataformat.Section attribute)

 	(chat_analyzer.dataformat.Spike attribute)

 	startTime_text (chat_analyzer.dataformat.Sample attribute)

 	(chat_analyzer.dataformat.Section attribute)

 	subscriptions (chat_analyzer.dataformat.TwitchSample attribute)

 	superchats (chat_analyzer.dataformat.YoutubeSample attribute)

T

 	
 	to_JSON() (chat_analyzer.dataformat.ChatAnalytics method)

 	(chat_analyzer.dataformat.TwitchChatAnalytics method)

 	(chat_analyzer.dataformat.YoutubeChatAnalytics method)

 	totalActivity (chat_analyzer.dataformat.ChatAnalytics attribute)

 	totalChatMessages (chat_analyzer.dataformat.ChatAnalytics attribute)

 	totalGiftSubscriptions (chat_analyzer.dataformat.TwitchChatAnalytics attribute)

 	totalMemberships (chat_analyzer.dataformat.YoutubeChatAnalytics attribute)

 	
 	totalSubscriptions (chat_analyzer.dataformat.TwitchChatAnalytics attribute)

 	totalSuperchats (chat_analyzer.dataformat.YoutubeChatAnalytics attribute)

 	totalUniqueUsers (chat_analyzer.dataformat.ChatAnalytics attribute)

 	totalUpgradeSubscriptions (chat_analyzer.dataformat.TwitchChatAnalytics attribute)

 	TwitchChatAnalytics (class in chat_analyzer.dataformat), [1]

 	TwitchSample (class in chat_analyzer.dataformat), [1]

 	type (chat_analyzer.dataformat.Highlight attribute)

U

 	
 	uniqueUsers (chat_analyzer.dataformat.Sample attribute)

 	
 	upgradeSubscriptions (chat_analyzer.dataformat.TwitchSample attribute)

Y

 	
 	YoutubeChatAnalytics (class in chat_analyzer.dataformat), [1], [2]

 	
 	YoutubeSample (class in chat_analyzer.dataformat)

 chat-analyzer

chat-analyzer

 chat_analyzer package

chat_analyzer package

Submodules

chat_analyzer.analyzer module

	
chat_analyzer.analyzer.check_chatlog_downloader_supported(chatlog: Chat, url: str)

	Ensures that we are able to properly analyze the downloaded chatlog by
enforcing the metadata matches expected values.
(Our own logic depends on certain things being true)

If there is a breach of compliance, we exit (we consider this to be a fatal error)

	Parameters

	
	chatlog (chat_downloader.sites.common.Chat) – The chatlog we have downloaded

	url (str) – The URL of the video we have downloaded the log from

	Currently we ensure:
	
	The video/stream happened in the past (not currently live or scheduled)

	The chat is downloaded from a supported platform that we have a proper

way of parsing.

	
chat_analyzer.analyzer.get_ChatAnalytics_from_file(filepath: str)

	Given a path to a previous output file of this program containing analytical data,
extract the data into a ChatAnalytics object and return it.

	Parameters

	filepath (str) – a path to a previous output file of this program containing analytical data

	Returns

	a ChatAnalytics object

	Return type

	ChatAnalytics

	
chat_analyzer.analyzer.get_chatlog_downloader(url: str)

	Gets a chat-downloader generator using Xenonva’s chat-downloader

	Parameters

	
	url – The URL of the past stream/VOD to download the chat from

	type – str

	Returns

	The chatlog we have downloaded

	Return type

	chat_downloader.sites.common.Chat

	
chat_analyzer.analyzer.get_chatmsgs_from_chatfile(filepath: str)

	Given a path to a chatfile (directly from Xenovas downloader or produced by
–save-chatfile-output) flag, extract the chat messages from the file into an array
of chat messages.

	Parameters

	filepath – a path to a chatfile (directly from Xenovas downloader or produced by

–save-chatfile-output) flag
:type filepath: str
:returns: an array of chat messages
:rtype: list[chat_downloader.sites.common.ChatMessage]

	
chat_analyzer.analyzer.output_json_to_file(json_obj, filepath)

	

	
chat_analyzer.analyzer.run(**kwargs)

	Runs the chat-analyzer

	Returns

	The chat analytics data as a dataclass

	Return type

	dataformat.ChatAnalytics (dataformat.YoutubeChatAnalytics or dataformat.TwitchChatAnalytics)

chat_analyzer.cli module

	
class chat_analyzer.cli.SmartFormatter(prog, indent_increment=2, max_help_position=24, width=None)

	Bases: ArgumentDefaultsHelpFormatter

Any help string starting with ‘R|’ has its newlines (

) preserved, in addition to
	keeping the fxnality from the HelpFormatter (displaying defaults next to descriptions).

Adapted from and thanks to:
https://stackoverflow.com/questions/3853722/how-to-insert-newlines-on-argparse-help-text

	
chat_analyzer.cli.check_interval(interval)

	Based on the MAX_INTERVAL and MIN_INTERVAL from chat_analyzer.py,
ensure that the entered interval respects that boundary

	
chat_analyzer.cli.check_percentile_float(value)

	Check that the value is between 0 and 100 exclusive

	
chat_analyzer.cli.check_positive_int(value)

	Check that the value is a positive integer

	
chat_analyzer.cli.main()

	

chat_analyzer.dataformat module

	
class chat_analyzer.dataformat.ChatAnalytics(duration: float, interval: int, description: str, program_version: str, platform: str, duration_text: str = '', interval_text: str = '', mediaTitle: str = 'No Media Title', mediaSource: str = 'No Media Source', samples: ~typing.List[~chat_analyzer.dataformat.Sample] = <factory>, totalActivity: int = 0, totalChatMessages: int = 0, totalUniqueUsers: int = 0, overallAvgActivityPerSecond: float = 0, overallAvgChatMessagesPerSecond: float = 0, overallAvgUniqueUsersPerSecond: float = 0, highlights: ~typing.List[~chat_analyzer.dataformat.Highlight] = <factory>, highlights_duration: float = 0, highlights_duration_text: str = '', highlight_percentile: float = 0, highlight_metric: str = '', spikes: ~typing.List[~chat_analyzer.dataformat.Spike] = <factory>, _overallUserChats: dict = <factory>, _currentSample: ~typing.Optional[~chat_analyzer.dataformat.Sample] = None)

	Bases: ABC

Class that contains the results of the chat data analysis/processing.

An instance of a subclass is created and then modified throughout
the analysis process. After the processing of the data is complete,
the object will contain all relevant results we are looking for.

This class cannot be directly instantiated, see the subclasses
YoutubeChatAnalytics & TwitchChatAnalytics. YT and Twitch
chats report/record data differently and contain site-specific
events, so we centralize common data/fxnality and separate
specifics into subclasses.

The object can then be converted to JSON/printed/manipulated as
desired to format/output the results as necessary.

—

[Defined when class Initialized]:

	duration: float
	The total duration (in seconds) of the associated video/media. Message times correspond to the video times.

	interval: int
	The time interval (in seconds) at which to compress datapoints into samples. i.e. Duration of the samples. The smaller the interval, the more
granular the analytics are. At interval=5, each sample contains 5 seconds of cumulative data.
(With the exception of the last sample, which may be shorter than the interval.)
This is b/c media duration is not necessarily divisible by the interval.
#(samples in raw_data) is about (video duration/interval) (+1 if necessary to encompass remaining non-divisible data at end of data).

	description: str
	A description included to help distinguish it from other analytical data.

	program_version: str
	The version of the chat analytics program that was used to generate the data. Helps identify outdated/version-specific data formats.

	platform: str
	Used to store the platform the data came from: ‘www.youtube.com’, ‘www.twitch.tv’, ‘youtu.be’…
While it technically can be determined by the type of subclass, this makes for easier conversion to JSON/output

[Automatically re-defined on post-init]:

	duration_text: str
	String representation of the media duration time.

	interval_text: str
	String representation of the interval time.

[Defined w/ default and modified DURING analysis]:

	mediaTitle: str
	The title of the media associated with the chatlog.

	mediaSource: str
	The link to the media associated with the chatlog (url that it was origianlly downloaded from or filepath of a chatfile).

	samples: List[Sample]
	An array of sequential samples, each corresponding to data about a section of chat of ‘interval’ seconds long.
Each sample has specific data corresponding to a time interval of the vid. See the ‘Sample’ class

	totalActivity: int
	The total number of messages/things (of any type!) that appeared in chat. (Sum of intervalActivity from all samples)
Includes messages,notifications,subscriptions, superchats, … anything that appeared in chat

	totalChatMessages: int
	The total number of chats sent by human (non-system) users (what is traditionally thought of as a chat)
NOTE: Difficult to discern bots from humans other than just creating a known list of popular bots and blacklisting,
because not all sites (YT/Twitch) provide information on whether chat was sent by a registered bot or not.

	highlight_percentile: float
	The cutoff percentile that samples must meet to be considered a highlight

	highlight_metric: str
	The metric to use for engagement analysis to build highlights. NOTE: must be converted into actual Sample field name before use.

[Defined w/ default and modified AFTER analysis]:

	totalUniqueUsers: int
	The total number of unique users that sent a chat message (human users that sent at least one traditional chat)

	overallAvgActivityPerSecond: float
	The average activity per second across the whole chatlog. (totalActivity/totalDuration)

	overallAvgChatMessagesPerSecond: float
	The average number of chat messages per second across the whole chatlog. (totalChatMessages/totalDuration)

	overallAvgUniqueUsersPerSecond: float
	The average number of unique users chatting per second.

	highlights: List[Highlight]
	A list of the high engagement sections of the chatlog.

	highlights_duration: float
	The cumulative duration of the highlights (in seconds)

	highlights_duration_text: str
	The cumulative duration of the highlights represented in text format (i.e. hh:mm:ss)

	spikes: List[Spike]
	Not yet implemented TODO
A list of the calculated spikes in the chatlog. May contain spikes of different types, identifiable by the spike’s type field.

	
chatlog_post_process(settings: ProcessSettings)

	After we have finished iterating through the chatlog and constructing all of the samples,
we call chatlog_post_process() to process the cumulative data points (so we don’t have to do this every time we add a sample).

This step is sometimes referred to as “analysis”.

Also removes the internal fields that don’t need to be output in the JSON object.

	Parameters

	settings (ProcessSettings) – Utility class for passing information from the analyzer to the chatlog processor and post-processor

	
create_new_sample()

	Post-processes the previous sample, then appends & creates a new sample
following the previous sample sequentially. If a previous sample doesn’t exist,
creates the first sample.

NOTE: If there there are only 2 chats, one at time 0:03, and the other at 5:09:12,
there are still a lot of empty samples in between (because we still want to graph/track the silence times with temporal stability)

	
description: str

	

	
duration: float

	

	
duration_text: str = ''

	

	
get_highlights(highlight_metric: str, highlight_percentile: float)

	Highlights reference a contiguous period of time where the provided metric remains above the percentile threshold.
Find and return a list of highlights referencing the start and end times of samples whose highlight_metric is in
the highlight_percentile for contiguous period of time of the referenced samples.

A highlight may reference more than one sample if contiguous samples meet the percentile cutoff.

Samples in the top ‘percentile’% of the selected engagement metric will be considered high-engagement samples and included in the highlights output list.
The larger the percentile, the greater the metric requirement before being reported. If ‘engagement-percentile’=93.0, any sample in the 93rd percentile (top 7.0%%) of the selected metric will be considered an engagement highlight.

These high-engagement portions of the chatlog are stored as highlights, and may last for multiple samples.

This method should only be called after the averages have been calculated,
ensuring accurate results when determining periods of high engagement.

	Parameters

	
	highlight_metric – The metric samples are compared to determine if they are high-engagement samples. NOTE: Internally converted to the actual field name of a sample field.

	highlight_percentile – The cutoff percentile that the samples must meet to be included in a highlight

	Returns

	a list of highlights referencing samples that met the percentile cutoff requirements for the provided metric

	Return type

	List[Highlight]

	
get_spikes(spike_sensitivity, spike_metric)

	A spike is a point in the chatlog where from one sample to the next, there is a sharp increase in the provided metric.

…? Are spikes sustained or..?
?:
A spike is a point in the chatlog where the activity is significantly different from the average activity.
Activity is significantly different if it is > avg*SPIKE_MULT_THRESHOLD.
We detect a spike if the high activity level is maintained for at least SPIKE_SUSTAIN_REQUIREMENT # of samples.

	
highlight_metric: str = ''

	

	
highlight_percentile: float = 0

	

	
highlights: List[Highlight]

	

	
highlights_duration: float = 0

	

	
highlights_duration_text: str = ''

	

	
interval: int

	

	
interval_text: str = ''

	

	
mediaSource: str = 'No Media Source'

	

	
mediaTitle: str = 'No Media Title'

	

	
overallAvgActivityPerSecond: float = 0

	

	
overallAvgChatMessagesPerSecond: float = 0

	

	
overallAvgUniqueUsersPerSecond: float = 0

	

	
platform: str

	

	
print_process_progress(msg, idx, finished=False)

	Prints progress of the chat download/process to the console.

If finished is true, normal printing is skipped and the last bar of progress is printed.
This is important because we print progress every UPDATE_PROGRESS_INTERVAL messages, and the total number of
messages is not usually divisible by this. We therefore have to slightly change the approach to printing progress for this special case.

	
process_chatlog(chatlog: Chat, source: str, settings: ProcessSettings)

	Iterates through the whole chatlog and calculates the analytical data (Modifies and stores in a ChatAnalytics object).

	Parameters

	
	chatlog (chat_downloader.sites.common.Chat) – The chatlog we have downloaded

	source (str) – The source of the media associated w the chatlog. URL of the media we have downloaded the log from, or a filepath

	settings (ProcessSettings) – Utility class for passing information from the analyzer to the chatlog processor and post-processor

	
process_message(msg)

	Given a msg object from chat, update appropriate statistics based on the chat

	
program_version: str

	

	
samples: List[Sample]

	

	
spikes: List[Spike]

	

	
to_JSON()

	

	
totalActivity: int = 0

	

	
totalChatMessages: int = 0

	

	
totalUniqueUsers: int = 0

	

	
class chat_analyzer.dataformat.Highlight(startTime: float, endTime: float, description: str, type: str, peak: float, avg: float)

	Bases: Section

Highlights reference a contiguous period of time where the provided metric remains above the percentile threshold.

—

	type: str
	The engagement metric. i.e. “avgActivityPerSecond”, “avgChatMessagesPerSecond”, “avgUniqueUsersPerSecond”, etc.
NOTE: It is stored as its converted value (the name of the actual field), NOT the metric str the user provided in the CLI.

	peak: float
	The maximum value of the engagement metric throughout the whole Highlight (among the samples in the Highlight).

	avg: float
	The average value of the engagement metric throughout the whole Highlight (among the samples in the Highlight).

	
avg: float

	

	
peak: float

	

	
type: str

	

	
class chat_analyzer.dataformat.ProcessSettings(print_interval: int, msg_break: int, highlight_percentile: float, highlight_metric: str, spike_sensitivity: float)

	Bases: object

Utility class for passing information from the analyzer to the chatlog processor and post-processor

	print_interval: int
	After ever ‘progress_interval’ messages, print a progress message. If <=0, progress printing is disabled

	msg_break: int
	(Mainly for Debug) Stop processing messages after BREAK number of messages have been processed.

	highlight_percentile: float
	The cutoff percentile that samples must meet to be considered a highlight

	highlight_metric: str
	The metric to use for engagement analysis to build highlights. NOTE: must be converted into actual Sample field name before use.

	spike_sensitivity: float
	How sensitive the spike detector is at picking up spikes. Higher sensitivity means more spikes are detected.

	
highlight_metric: str

	

	
highlight_percentile: float

	

	
msg_break: int

	

	
print_interval: int

	

	
spike_sensitivity: float

	

	
class chat_analyzer.dataformat.Sample(startTime: float, endTime: float, sampleDuration: float = -1, startTime_text: str = '', endTime_text: str = '', activity: int = 0, chatMessages: int = 0, firstTimeChatters: int = 0, uniqueUsers: int = 0, avgActivityPerSecond: float = 0, avgChatMessagesPerSecond: float = 0, avgUniqueUsersPerSecond: float = 0, _userChats: dict = <factory>)

	Bases: object

Class that contains data of a specific time interval of the chat.
Messages will be included in a sample if they are contained within [startTime, endTime)

—

[Defined when class Initialized]:

	startTime: float
	The start time (inclusive) (in seconds) corresponding to a sample.

	endTime: float
	The end time (exclusive) (in seconds) corresponding to a sample.

[Automatically Defined on init]:

	startTime_text: str
	The start time represented in text format (i.e. hh:mm:ss)

	endTime_text: str
	The end time represented in text format (i.e. hh:mm:ss)

	sampleDuration: float
	The duration (in seconds) of the sample (end-start)
NOTE: Should be == to the selected interval in all except the last sample if the total duration of the chat is not divisible by the interval

[Defined w/ default and modified DURING analysis of sample]:

	activity: int
	The total number of messages/things (of any type!) that appeared in chat within the start/endTime of this sample.
Includes messages,notifications,subscriptions, superchats, … anything that appeared in chat

	chatMessages: int
	The total number of chats sent by human (non-system) users (what is traditionally thought of as a chat)
NOTE: Difficult to discern bots from humans other than just creating a known list of popular bots and blacklisting,
because not all sites (YT/Twitch) provide information on whether chat was sent by a registered bot or not.

	firstTimeChatters: int
	The total number of users who sent their first message of the whole stream during this sample interval

[Defined w/ default and modified AFTER analysis of sample]:

	uniqueUsers: int
	The total number of unique users that sent a chat message across this sample interval (len(self._userChats))

	avgActivityPerSecond: float
	The average activity per second across this sample interval. (activity/sampleDuration)

	avgChatMessagesPerSecond: float
	The average number of chat messages per second across this sample interval. (totalChatMessages/sampleDuration)

	avgUniqueUsersPerSecond: float
	The average number of unique users that sent a chat across this sample interval. (uniqueUsers/sampleDuration)

	
activity: int = 0

	

	
avgActivityPerSecond: float = 0

	

	
avgChatMessagesPerSecond: float = 0

	

	
avgUniqueUsersPerSecond: float = 0

	

	
chatMessages: int = 0

	

	
endTime: float

	

	
endTime_text: str = ''

	

	
firstTimeChatters: int = 0

	

	
sampleDuration: float = -1

	

	
sample_post_process()

	After we have finished adding messages to a particular sample (moving on to the next sample),
we call sample_post_process() to process the cumulative data points (so we don’t have to do this every time we add a message)

Also removes the internal fields that don’t need to be output in the JSON object.

	
startTime: float

	

	
startTime_text: str = ''

	

	
uniqueUsers: int = 0

	

	
class chat_analyzer.dataformat.Section(startTime: float, endTime: float, description: str)

	Bases: object

Contains generic information about a noteable section of the chatlog

—

[Defined when class Initialized]:

	startTime: float
	The start time (inclusive) (in seconds) corresponding to a section.

	endTime: float
	The end time (exclusive) (in seconds) corresponding to a section.

	description: str (optional)
	A description of the section (if any).

[Automatically re-defined on post-init]:

	duration: float
	The duration (in seconds) of the section (end-start)

	duration_text: str
	The duration represented in text format (i.e. hh:mm:ss)

	startTime_text: str
	The start time represented in text format (i.e. hh:mm:ss)

	endTime_text: str
	The end time represented in text format (i.e. hh:mm:ss)

	
description: str

	

	
duration: float = 0.0

	

	
duration_text: str = ''

	

	
endTime: float

	

	
endTime_text: str = ''

	

	
startTime: float

	

	
startTime_text: str = ''

	

	
class chat_analyzer.dataformat.Spike(startTime: float, endTime: float, description: str)

	Bases: Section

Contains information about an activity spike in the chatlog

TODO: Implement

	
description: str

	

	
endTime: float

	

	
startTime: float

	

	
class chat_analyzer.dataformat.TwitchChatAnalytics(duration: float, interval: int, description: str, program_version: str, platform: str, duration_text: str = '', interval_text: str = '', mediaTitle: str = 'No Media Title', mediaSource: str = 'No Media Source', samples: ~typing.List[~chat_analyzer.dataformat.Sample] = <factory>, totalActivity: int = 0, totalChatMessages: int = 0, totalUniqueUsers: int = 0, overallAvgActivityPerSecond: float = 0, overallAvgChatMessagesPerSecond: float = 0, overallAvgUniqueUsersPerSecond: float = 0, highlights: ~typing.List[~chat_analyzer.dataformat.Highlight] = <factory>, highlights_duration: float = 0, highlights_duration_text: str = '', highlight_percentile: float = 0, highlight_metric: str = '', spikes: ~typing.List[~chat_analyzer.dataformat.Spike] = <factory>, _overallUserChats: dict = <factory>, _currentSample: ~typing.Optional[~chat_analyzer.dataformat.Sample] = None, totalSubscriptions: int = 0, totalGiftSubscriptions: int = 0, totalUpgradeSubscriptions: int = 0)

	Bases: ChatAnalytics

Extension of the ChatAnalytics class, meant to contain data that all chats have
and data specific to Twitch chats.

NOTE: Most twitch-specific attributes don’t make a lot of sense to continously report a per-second value,
so we don’t!

—

(See ChatAnalytics class for common fields)

[Defined w/ default and modified DURING analysis]:

	totalSubscriptions: int
	The total number of subscriptions that appeared in the chat (which people purchased themselves).

	totalGiftSubscriptions: int
	The total number of gift subscriptions that appeared in the chat.

	totalUpgradeSubscriptions: int
	The total number of upgraded subscriptions that appeared in the chat.

	
chatlog_post_process(settings)

	After we have finished iterating through the chatlog and constructing all of the samples,
we call chatlog_post_process() to process the cumulative data points (so we don’t have to do this every time we add a sample).

This step is sometimes referred to as “analysis”.

Also removes the internal fields that don’t need to be output in the JSON object.

	Parameters

	settings (ProcessSettings) – Utility class for passing information from the analyzer to the chatlog processor and post-processor

	
process_message(msg)

	Given a msg object from chat, update common fields and twitch-specific fields

	
to_JSON()

	

	
totalGiftSubscriptions: int = 0

	

	
totalSubscriptions: int = 0

	

	
totalUpgradeSubscriptions: int = 0

	

	
class chat_analyzer.dataformat.TwitchSample(startTime: float, endTime: float, sampleDuration: float = -1, startTime_text: str = '', endTime_text: str = '', activity: int = 0, chatMessages: int = 0, firstTimeChatters: int = 0, uniqueUsers: int = 0, avgActivityPerSecond: float = 0, avgChatMessagesPerSecond: float = 0, avgUniqueUsersPerSecond: float = 0, _userChats: dict = <factory>, subscriptions: int = 0, giftSubscriptions: int = 0, upgradeSubscriptions: int = 0)

	Bases: Sample

Class that contains data specific to Twitch of a specific time interval of the chat.

—

[Defined w/ default and modified DURING analysis of sample]:

	subscriptions: int
	The total number of subscriptions (that people purhcased themselves) that appeared in chat within the start/endTime of this sample.

	giftSubscriptions: int
	The total number of gift subscriptions that appeared in chat within the start/endTime of this sample.

	upgradeSubscriptions: int
	The total number of upgraded subscriptions that appeared in chat within the start/endTime of this sample.

	
giftSubscriptions: int = 0

	

	
subscriptions: int = 0

	

	
upgradeSubscriptions: int = 0

	

	
class chat_analyzer.dataformat.YoutubeChatAnalytics(duration: float, interval: int, description: str, program_version: str, platform: str, duration_text: str = '', interval_text: str = '', mediaTitle: str = 'No Media Title', mediaSource: str = 'No Media Source', samples: ~typing.List[~chat_analyzer.dataformat.Sample] = <factory>, totalActivity: int = 0, totalChatMessages: int = 0, totalUniqueUsers: int = 0, overallAvgActivityPerSecond: float = 0, overallAvgChatMessagesPerSecond: float = 0, overallAvgUniqueUsersPerSecond: float = 0, highlights: ~typing.List[~chat_analyzer.dataformat.Highlight] = <factory>, highlights_duration: float = 0, highlights_duration_text: str = '', highlight_percentile: float = 0, highlight_metric: str = '', spikes: ~typing.List[~chat_analyzer.dataformat.Spike] = <factory>, _overallUserChats: dict = <factory>, _currentSample: ~typing.Optional[~chat_analyzer.dataformat.Sample] = None, totalSuperchats: int = 0, totalMemberships: int = 0)

	Bases: ChatAnalytics

Extension of the ChatAnalytics class, meant to contain data that all chats have
and data specific to YouTube chats.

NOTE: Most youtube-specific attributes don’t make a lot of sense to continously report a per-second value,
so we don’t!

—

(See ChatAnalytics class for common fields and descriptions)

[Defined w/ default and modified DURING analysis]:

	totalSuperchats: int
	The total number of superchats (regular/ticker) that appeared in the chat.
NOTE: A creator doesn’t necessarily care what form a superchat takes, so we just combine regular and ticker superchats

	totalMemberships: int
	The total number of memberships that appeared in the chat.

	
process_message(msg)

	Given a msg object from chat, update common fields and youtube-specific fields

	
to_JSON()

	

	
totalMemberships: int = 0

	

	
totalSuperchats: int = 0

	

	
class chat_analyzer.dataformat.YoutubeSample(startTime: float, endTime: float, sampleDuration: float = -1, startTime_text: str = '', endTime_text: str = '', activity: int = 0, chatMessages: int = 0, firstTimeChatters: int = 0, uniqueUsers: int = 0, avgActivityPerSecond: float = 0, avgChatMessagesPerSecond: float = 0, avgUniqueUsersPerSecond: float = 0, _userChats: dict = <factory>, superchats: int = 0, memberships: int = 0)

	Bases: Sample

Class that contains data specific to Youtube of a specific time interval of the chat.

—

[Defined w/ default and modified DURING analysis of sample]:

	superchats: int
	The total number of superchats (regular/ticker) that appeared in chat within the start/endTime of this sample.
NOTE: A creator doesn’t necessarily care what form a superchat takes, so we just combine regular and ticker superchats

	memberships: int
	The total number of memberships that appeared in chat within the start/endTime of this sample.

	
memberships: int = 0

	

	
superchats: int = 0

	

chat_analyzer.metadata module

Set metadata for chat-analyzer

chat_analyzer.util module

	
chat_analyzer.util.dprint(should_print: bool, s: str)

	Simple styled debug printer

	
chat_analyzer.util.remove_non_alpha_numeric(s: str) → str

	Remove non-alphanumeric characters from a string and replaces all spacebars with underscores
(Useful for normalizing the title of a video before turning it into a filename)

Module contents

Top-level package for chat-analyzer.

 chat_analyzer

chat_analyzer

	chat_analyzer package
	Submodules

	chat_analyzer.analyzer module

	chat_analyzer.cli module

	chat_analyzer.dataformat module

	chat_analyzer.metadata module

	chat_analyzer.util module

	Module contents

_images/ExampleHighlights_new.png
Highlights:

Highlights totalling 18:20 in length, representing the top 7% of samples based on usersPSec.

Timestamp Duration (s) Peak v Avg. Highlight Description 15 sec
53:25 - 54:40 75.0s 13.60 9.73 avgUniqueUsersPerSecond sustained at or above [6.2] Jump to 15 seconds before 53:25
3:29:30 - 3:29:35 5.0s 12.80 12.80 avgUniqueUsersPerSecond sustained at or above [6.2] Jump to 15 seconds before 3:29:30
3:27:45 - 3:28:00 15.0s 12.20 9.27 avgUniqueUsersPerSecond sustained at or above [6.2] Jump to 15 seconds before 3:27:45
3:51:35 - 3:52:15 40.0s 12.00 8.45 avgUniqueUsersPerSecond sustained at or above [6.2] Jump to 15 seconds before 3:51:35
3:29:40 - 3:30:20 40.0s 11.80 9.22 avgUniqueUsersPerSecond sustained at or above [6.2] Jump to 15 seconds before 3:29:40

A AR A A e, aa e PR P Y T P Y ST U T Y R 7 L 2 AP o e L £ A AP

_images/YoutubeShare.png
/> SHARE

_static/file.png

_static/minus.png

_static/plus.png

_images/ExampleChart.png
ota000 013320 ot:3640 ota000 014320 otds0 015000 15320 ot:640

MMW%&M..MW:MWHMW mm.mhu‘m.mﬂaﬂ

nav.xhtml

 Table of Contents

 		
 Chat Analyzer

 		
 Getting Started

 		
 Basic Usage

 		
 Step 1 - Installation

 		
 Step 2 - Pick a Past Stream

 		
 Step 3 - Run the Chat Analyzer

 		
 Final Step - Visualize the Chat Data

 		
 Usage Modes & Source

 		
 url

 		
 chatfile

 		
 reanalyze

 		
 Command Line Usage

 		
 Overview

 		
 Output Specifications

 		
 Common fields:

 		
 Chat Analytics Data

 		
 Sample Data

 		
 Highlight Data

 		
 Twitch-specific fields:
